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pressure,

Land Surface

@ Atmospheric Data Assimilation System:

@ Using mostly variational data
assimilation

@ Fixing land surface states during the
analysis procedure

Forcing:
Precipitaiton, Downward Radiation

Control States:

Land Surface M Soil moisture and temperature

@ Land Surface Data Assimilation System:

@ Using mostly ensemble-based filtering
@ Updating only land surface states in
the analysis procedure
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moisture predictions.
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Research Background and Motivations

@ Atmospheric and land surface data assimilation have been
developed separately for a long time

@ The available data assimilation systems do not allow us to
study the relative impact of remotely-sensed precipitation and
soil moisture (two of the most important variables in
hydrologic cycles) on short-term precipitation and soil
moisture predictions.

e Precipitation: TRMM, GPM
e Soil Moisture: SMOS, AMSR-E, SMAP
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Joint Data Assimilation System

@ The coupled WRF-Noah model
@ Similar data assimilation approaches for both atmospheric and
soil moisture states:

e Variational data assimilation scheme
o National Meteorological Center (NMC) method for estimating

the background error covariance
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System and Experiment
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Experiment Setup
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@ Experiment duration: July 1-29, 2013
@ Experiments:

e OL: no data assimilation

e PrDA: assimilation of six-hour TMPA 3B42 precipitation data

o PrSMDA: assimilation of six-hour TMPA 3B42 precipitation and orbital
SMOS soil moisture data
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Precipitation Evaluation
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Score of the Precipitation Analyses (Different Times)

00-06 UTC

12-18 UTC 06-12 UTC

18-24 UTC

Pre

cipitation Evaluation

Oe00

—e—OL --o--PrDA

Threat Score (ETS)

False Alarm Ratio (FAR)

Bias Score (BS)

06 1
(a) (b) 24 (c)
041 08 4
pe
06 n/a/z_/:—z'—a\gﬂ 1
02 o0
04
0 0
06 08 1357101520 05135710152
(d) (e) 2
041 | o8
2-0.¢ p:
"0~ 0. " 11 &
. o 06 ;6 g o o
X 6-0-g-0" ©
04
0 0
06 081357101520 05135710152 051 3 5 7 10 15 20
(9) (h) 21 (i)
| o8
04| o o 0 :
~e. - 6-6-o.
hiak Y 06 o 1
02 o[ | o-e-e-©”
©
4
0 o 0
051 3 5 7 10 1520 051 3 5 7 10 15 20 051 3 5 7 10 15 20
06
24 (1)
041
1| ©-6-6-0-0-0
021 *
0
051 3 5 7 101520 051 3 5 7 10 15 20 051 3 5 7 10 1520

Rainfall Threshold [mm/6h]

Rainfall Threshold [mm/6h]

Rainfall Threshold [mm/6h]

13 /25



Precipitation Evaluation
fe1eX Yol

Samples of Six-Hour Precipitation

Stage IV

6h Rainfall
Valid at 06UTC

6h Rainfall
Valid at 12UTC

6h Rainfall
Valid at 18UTC

6h Rainfall
Valid at 24UTC

0 10 20 30
Six-Hour Precipitation Estimates in mm (2013.07.20) 14 /25



Precipitation Evaluation
fe1eX Yol

Samples of Six-Hour Precipitation

Stage IV

6h Rainfall
Valid at 06UTC

6h Rainfall
Valid at 12UTC

6h Rainfall
Valid at 18UTC

6h Rainfall
Valid at 24UTC

0 10 20 30
Six-Hour Precipitation Estimates in mm (2013.07.20) 15 /25



Precipitation Evaluation
fe1eX Yol

Samples of Six-Hour Precipitation

Stage IV

6h Rainfall
Valid at 06UTC

6h Rainfall
Valid at 12UTC

6h Rainfall
Valid at 18UTC

6h Rainfall
Valid at 24UTC

0 10 20 30
Six-Hour Precipitation Estimates in mm (2013.07.20) 16 /25



Precipitation Evaluation
fe1eX Yol

Samples of Six-Hour Precipitation

Stage IV

6h Rainfall
Valid at 06UTC

6h Rainfall
Valid at 12UTC

6h Rainfall
Valid at 18UTC

6h Rainfall
Valid at 24UTC

0 10 20 30
Six-Hour Precipitation Estimates in mm (2013.07.20) 17/25



Precipitation Evaluation
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Statistics of Precipitation Forecasts
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Soil Moisture Evaluation
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SCAN and CRN Station Map
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@ SCAN: Soil Climate Analysis Network
@ CRN: Climate Reference Network

19/25



Soil Moisture Evaluation
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Statistics of Hourly Top 10-cm Soil Moisture Comparison
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Soil Moisture Evaluation
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Statistics of Hourly 10-to-40-cm Soil Moisture Comparison
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Soil Moisture Evaluation
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Selected Time Series
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Summary and Future Directions

@ Assimilation of TMPA 3B42 precipitation improves
precipitation analyses significantly but its benefit drops
quickly beyond the assimilation window.

@ Assimilation of SMOS soil moisture has only marginal effect
on precipitation analyses/forecasts.

@ Both precipitation and soil moisture data assimilation can
reduce surface soil moisture simulations, while has small to
negative impact on lower layer soil moisture simulations.
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Summary and Future Directions

@ Assimilation of TMPA 3B42 precipitation improves
precipitation analyses significantly but its benefit drops
quickly beyond the assimilation window.

@ Assimilation of SMOS soil moisture has only marginal effect
on precipitation analyses/forecasts.

@ Both precipitation and soil moisture data assimilation can
reduce surface soil moisture simulations, while has small to
negative impact on lower layer soil moisture simulations.

Future Directions

@ Bias characterization of satellite and model soil moisture data

@ Assimilation of IMERG precipitation and SMAP soil moisture

@ Assimilation of radiance observations from GPM constellation
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Thank you!
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